Digital LMS Adaptation of Analog Filters Without Gradient Information

نویسندگان

  • Anthony Chan Carusone
  • David A. Johns
چکیده

The least mean square (LMS) algorithm has practical problems in the analog domain mainly due to dc offset effects. If digital LMS adaptation is used, a digitizer (analog-to-digital converter or comparator) is required for each gradient signal as well as the filter output. Furthermore, in some cases the state signals are not available anywhere in the analog signal path necessitating additional analog filters. Here, techniques for digitally estimating the gradient signals required for the LMS adaptation of analog filters are described. The techniques are free from dc offset effects and do not require access to the filter’s internal state signals. Digitizers are required only on the input and error signal. The convergence rate and misadjustment are identical to traditional LMS adaptation, but an additional matrix multiplication is required for each iteration. Hence, analog circuit complexity is reduced but digital circuit complexity is increased with no change in overall performance making it an attractive option for mixed-signal integrated systems in digital CMOS. Signed and subsampled variations of the adaptive algorithm can provide a further reduction in analog and digital circuit complexity, but with a slower convergence rate. Theoretical analyses, behavioral simulations, and experimental results from an integrated filter are all presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obtaining digital gradient signals for analog adaptive filters

Analog adaptive filters with digitally programmable coefficients can provide speed, power, and area advantages over digital adaptive filters while overcoming the dc offset problems associated with fully analog implementations. However, digital estimates of the filter states and gradient signals must be generated from the filter output in order to perform LMS adaptation. State observers studied ...

متن کامل

1 Applications of Adaptive Filtering

Owing to the powerful digital signal processors and the development of advanced adaptive algorithms there are a great number of different applications in which adaptive filters are used. The number of different applications in which adaptive techniques are being successfully used has increased enormously during the last two decades. There is a wide variety of configurations that could be applie...

متن کامل

Adaptive Transform Coding Using LMS-like Principal Component Tracking

A new set of algorithms for transform adaptation in adaptive transform coding is presented. These algorithms are inspired by standard techniques in adaptive nite impulse response (FIR) Wiener ltering and demonstrate that similar algorithms with simple updates exist for tracking principal components (eigenvectors of a correlation matrix). For coding an N -dimensional source, the transform adapta...

متن کامل

Improving adaptive resolution of analog to digital converters using least squares mean method

This paper presents an adaptive digital resolution improvement method for extrapolating and recursive analog-to-digital converters (ADCs). The presented adaptively enhanced ADC (AE-ADC) digitally estimates the digital equivalent of the input signal by utilizing an adaptive digital filter (ADF). The least mean squares (LMS) algorithm also determines the coefficients of the ADF block. In this sch...

متن کامل

Efficient algorithm for Speech Enhancement using Adaptive filter

The present system of speech enhancement is developing by adaptive filtering approach in digital filters. The adaptive filter utilizes the least mean square algorithm for noise removal, but in practical application of LMS algorithm, a key parameter is the step size. As it is known, if the step size is large, the convergence rate of LMS algorithm will be rapid, but the steady-state mean square e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001